基于实时数据的纺纱质量异常因素预测方法的研究
2015-09-13 11:53:41   来源:   评论:0 点击:

为探究纺纱过程中质量波动的规律,预测产生系统误差的不确定性因素的理论依据,分析纺纱质量特征值波动的成因、规律,以及影响因素的产生机理及其关系;利用纺纱过程的实时数据,从纺
王志刚a,马创涛b
(西安工程大学a.科技处;b.管理学院,西安  710048)
 
摘要:为探究纺纱过程中质量波动的规律,预测产生系统误差的不确定性因素的理论依据,分析纺纱质量特征值波动的成因、规律,以及影响因素的产生机理及其关系;利用纺纱过程的实时数据,从纺纱质量波动规律表达、人—机—环境脆性模型构建,以及TARCH(1,1)模型对影响因素异常行为辨识三个方面对纺纱质量特征值波动的内在机理进行了建模与设计,进而提出了基于实时数据的纺纱质量波动预测方法。通过实验仿真与对比分析,结果表明:预测方法实现了纺纱质量特征值波动过程的可视化,做到了影响因素异常行为的事前预警以及成纱质量的实时在线监测。
关键词:纺纱质量;波动机理;异常因素;实时数据;人—机—环境模型
中图分类号:TS103.2  文献标志码:文章编号:1001-9634(2015)05-0009-06
 
收稿日期:2015-02-04
基金项目:陕西省科技计划项目(2013KRM07);陕西省社科基金项目(13D026);陕西省社科界重大理论与现实问题研究项目(2014Z039);中国纺织工业联合会指导性计划项目(2014076,2013068,2011081);陕西省教育科学“十二五”规划课题(SGH140649);陕西省教育厅科研计划项目(2013JK0742,11JK1055)
作者简介:王志刚(1981—),男,陕西宝鸡人,硕士,工程师,主要研究方向为纺织生产过程管理。
 
Research on the Method Predicting Abnormal Quality Factors Based on Real Time Data
WANG Zhiganga,MA Chuangtaob
(Xi’an Polytechnic University:a.Technology Dept.;
b.Management School,Xi’an 710048,China)
 
Abstract:In order to find the regular pattern of spinning quality fluctuation rules,to predict uncertain factors of system error theory basis,analysis is done to the cause resulting in fluctuation of spinning quality eigenvalue,the regularity and the influence factors of the generation mechanism and the relationship;the spinning process of real time data,expression from the fluctuation of spinning yarn quality and construction of man-machine-environment brittleness model and TARCH (1,1) model of influencing factors of abnormal behavior identification intrinsic mechanism of three aspects on spinning quality characteristics value fluctuation modeling and design,and puts forward the prediction method based on real time data of spinning quality fluctuation.The simulation and comparative analysis finds that the prediction method realizes the spinning quality eigenvalue variation in the process of visualization,so that the influence factors of abnormal behavior of the advance warning and real time monitoring of the yarn quality.
Key Words:spinning quality;fluctuation mechanism;abnormal factors;real time data;human-machine-environment model
 
参考文献:
[1]FATTAHI S R,SEYED A H,TAHERI S M.Two-way prediction of cotton yarn properties and fiber properties using multivariate multiple regression[J].Journal of the Textile Institute,2011,102(10):849-856.
[2] MALIK S A,TANWARI A,SYED U,et al.Blended yarn analysis:part I-influence of blend ratio and break draft on mass variation,hairiness,and physical properties of 15 tex PES/CO blended ring-spun yarn[J].Journal of Natural Fibers,2012,9(3):197-206.
[3] MATTES A,PUSCH T,CHERIF C.Numerical simulation of yarn tensile force for dynamic yarn supply systems of textile machines[J].Journal of the Textile Institute,2012,103(1):70-79.
[4] SELVANAYAKI M,VIJAVA M S,JAMUNA K S,et al.An interactive tool for yarn strength prediction using support vector regression[C]//Proceedings of the 2nd International Conference on Machine Learning and Computing(ICMLC 2010),2010:335-339.
[5] FATTAHI S,TAHERI S M,RAVANDI H.Cotton yarn engineering via fuzzy least squares regression[J].Fibers and Polymers,2012,13(3):390-396.
[6] MOKHTAR S,BEN A S,SAKLI F.Optimization of textile parameters of plain woven vascular prostheses[J].Journal of the Textile Institute,2010,101(12):1 095-1 105.
[7] FALLAHPOUR A R,MOGHASSEM A R.Spinning preparation parameters selection for rotor spun knitted fabric using VIKOR method of multicriteria decisionmaking[J].Journal of the Textile Institute,2013,104(1):7-17.
[8] MOHAMED N,SAMAR A E.Prediction of some cotton fiber blends properties using regression models[J].Alexandria Engineering Journal,2008,47(2):147-153.
[9] MWASIAGI J I,HUANG X B,WANG X H.The use of hybrid algorithms to improve the performance of yarn parameters prediction models[J].Fibers and Polymers,2012,13(9):1 20-1 208.
[10] MARDANI M N,SAFAR J M,AGHDAM M M.Finite-element and multivariate analyses of tension distribution and spinning parameter effects on a ring-spinning balloon[C]//Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2010,224(2):253-258.
[11] 邵景峰,王进富,马晓红,等.一种影响织造过程的不确定性预测理论模型[J].纺织器材,2012,39(6):57-62.
[12] YANG J G,LV Z J,LI B Z.Quality prediction in complex industrial process with support vector machine and genetic algorithm optimization:A case study[J].Applied Mechanics and Materials,2012,232(10):603-608.
[13] 吕志军,杨建国,项前.基于遗传算法参数优化的纱线质量预测技术[J].东华大学学报:自然科学版,2012,38(5):519-523.
[14] LV Z J,XIANG Q,YANG J G.A novel data mining method on quality control within spinning process[J].Applied Mechanics and Materials,2012,224(1):87-92.
[15] 李蓓智,李利强,杨建国,等.基于GA-SVM 的质量预测系统设计和实现[J].计算机工程,2011,37(1):167-169.
[16] PEI Z G,CHEN G,LIU C,et al.Experimental study on the fiber motion in the nozzle of vortex spinning via highspeed photography[J].Journal of Natural Fibers,2012,9(2):117-135.
[17] LV J,CAO C H.Prediction of yarn quality based on differential evolutionary BP neural network[C]//Proceedings of the 4th International Conference on Computational and Information Sciences( ICCIS 2012),2012:1 232-
1 235.
[18] ZHAO B. Prediction of thin place of polyester/cotton ring yarn properties from process parameters by using neural network and regression analysis[C]//Proceedings of the 7th International Conference on System of Systems Engineering(SOSE 2012),2012:18-20.
[19] LIU H,ZHANG Y,CHEN L,et al.Development and characterization of flexible heating fabric based on conductive filaments[J].Journal of the International Measurement Confederation,2012,45(7):1 855-1 865.
[20] MOHAMMADI T,TAGHAVI M,BANDIDARIAN A.The effect of exchange rate uncertainty on import:TARCH approach[J].International Journal of Management Business Research,2011,1(4):211-220.
[21] SALVINIJA P,PETRULISA D.Influence of twisting on linen fancy yarn structure[J].Journal of Natural Fibers,2014,11(1):74-86.
 

相关热词搜索:实时 数据 异常 质量 预测

上一篇:NOVO型电锭式短纤倍捻机的性能及应用实践
下一篇:重庆金猫技术改造项目喜获批

分享到: 收藏