## • 技术专论

# 环锭纺纱气圈顶端张力 T。的分析

## 周炳荣

(东华大学,上海 201620)

摘要:为了弄明白环锭细纱机纺纱张力 T。与有关因素的关系,从三维的气圈方程求得,仅计离 心力时气圈纱曲线近似是平面上正弦曲线,定义域为 $[0,\pi]$ ;再从三维的气圈张力参数 p 计算式 求得二维的气圈张力参数 p<sub>2</sub> 和 p<sub>p</sub>,确定气圈纱曲线形状和张力,纱张力 T<sub>0</sub> = m $\omega^2 p_p^2$ 。在一落纱 期间,纱张力 T<sub>0</sub> 主要随气圈高度 h 和卷绕直径 d<sub>w</sub> 变化。实例计算结果表明,筒管底部直径放 大使做管底时纱张力 T<sub>0</sub> 降低;做管身时纱张力 T<sub>0</sub> 逐渐增大,做管顶时纱张力 T<sub>0</sub> 迅速增至最 大。恒张力纺纱纱中张力 T<sub>0</sub> 不变,它要求锭速  $\omega$  做调节变化,锭速  $\omega$  随着气圈高度 h 变化作调 节称为基本调节,其规律是 h $\omega$  为常数;随卷绕直径 d<sub>w</sub> 变化作调节称为逐层调节,其规律是  $\frac{\omega}{\sqrt{d_w}}$ 为常数,最后按实例草拟锭速变化曲线图。 **关 键 词**:环锭纺;锭速变化规律;纱张力;控制;气圈

**中图分类号:**TS103.11<sup>+</sup>5 **文献标志码:**A **文章编号:**1001-9634(2015)03-0001-07

Analysis of Yarn Tension T<sub>o</sub> on the Balloon Top in the Ring Spinning Process

## ZHOU Bingrong

(Donghua University, Shanghai 201620, China)

Abstract: To make clear the relationship between the balloon tension  $T_o$  and the involved factors, this paper shows that the yarn-curve for balloon is nearly a sinus in definition domain  $[0, \pi]$ , on analyzing the 3D equation for balloon by only considering the centrifugal force, and finds the tension parameter  $p_z$  and  $p_p$  of 2D balloon deduced from the formula of tension parameter p. So the yarn-curve shape and balloon tension can be determined, consequently with the yarn tension  $T_o = m\omega^2 p_p^2$ . The yarn tension  $T_o$  follows changes of balloon height h and winding diameter  $d_w$  during spinning in one lift. An example with calculating shows that as the bobbin base diameter amplifies, the yarn tension  $T_o$  of the bobbin drops in bottom, grows steadily in middle, and rises rapidly in top. In the spinning with constant tension, the tension  $T_o$  keeps constant, which yet allows spindle speed  $\omega$  variation; variation along with balloon height h called basic control, i. e.  $h\omega$  is const. Variation along with winding diameter  $d_w$  called layer-by-layer control,

i. e.  $\frac{\omega}{\sqrt{d_w}}$  is const. In the end of the paper, a sketch of spindle speed variation is schemed as an example.

Key Words: ring-spinning process; the law of spindle speed variation; yarn tension; control; balloon

## 0 引言

收稿日期:2014-11-11 作者简介:周炳荣(1934—),男,东华大学教授。 在环锭细纱机上气圈顶点 *o* 的纱张力是 *T*<sub>o</sub>,假 定纱和导纱钩之间摩擦很小,则在导纱钩上方纱张 力近似是 T<sub>o</sub>。纱张力 T<sub>o</sub>因气圈纱高速回转的离心 力和筒管卷绕的纱张力共同作用而产生,随气圈高 度 h 和卷绕直径 d<sub>w</sub>大小而变化;由于其大小及变 化影响到成纱质量、卷绕紧密、气圈回转稳定、纺纱 断头率、机器生产率、锭子功率消耗等,因而应设法 调节和控制它,使纺纱工艺在最有利情况下进行。

纱张力 T。大小及变化只能从气圈理论的分析 获得。气圈理论主要是研究气圈纱曲线形状与张 力,这两者是相互关联的;准确地说,气圈纱曲线是 瞬时纱张力与外力平衡作用的标志。作用在纺纱气 圈纱曲线任意质点上外力有离心力、空气阻力、科氏 力、纱自重;其中以离心力最大,纱自重最小。为简 便计,在计算纱张力 T。时只考虑离心力作用。过 去多位学者论证得出,仅计离心力作用时气圈纱曲 线近似于正弦曲线,迄今这仍然是共识。然而纱张 力计算就不同了,它须"取钢丝圈为脱离体"做分析 得到,这就与钢丝圈一钢领接触型式有关。早在 1950年, P.F.格罗申, A. Π拉科夫等认为钢丝圈-钢领为两点接触,得出纱张力 T<sub>x</sub> 计算式,如本文式 (f1)<sup>[1-2]</sup>。现在已认识到钢丝圈一钢领为一点接触, 这个公式就不能用了。1996年,我校陈人哲教授在 《纺机设计》中提出纱张力 T,计算式<sup>[3]</sup> 是正确 的一一笔者再次导出,如本文式(f2),以期广泛应用。

笔者经研究认为,C. 马克在 1956 年给出的气 圈方程<sup>[4]</sup>——如本文式(1a)所示是正确和全面的, 它计及了离心力、空气阻力、科氏力、纱自重等作用, 可用电脑计算和绘出三维的气圈纱曲线形状。为计 算纱张力*T*,笔者补充了气圈张力参数*p*计算式<sup>[5]</sup>, 它适用于钢丝圈—钢领为一点接触情况;纱张力*T*。 = $m\omega^2 p^2$ ,是空间力。然而,从这个气圈方程也能导 出仅计离心力作用时气圈纱曲线近似为正弦曲线, 如本文式(3),其形状由张力参数  $p_z$ (cm)确定;纱 张力*T*。= $m\omega^2 p_p^2$ ,在平面 xoz 内,如图1所示。

## 1 气圈纱曲线方程式

计及纱自重mg,科氏力 $2mv\omega$ ,空气阻力  $\frac{1}{2}C_1\rho du^2$ ,及离心力 $mr\omega^2$ 作用,气圈纱曲线方程式 如下:

$$\frac{d}{ds}(T\frac{dx}{ds}) + mx\omega^{2} + 2mv\omega\frac{dy}{ds} + \frac{1}{2}C_{1}\rho dl_{1}u^{2} = 0,$$
  
$$\frac{d}{ds}(T\frac{dy}{ds}) + my\omega^{2} + 2mv\omega\frac{dx}{ds} + \frac{1}{2}C_{1}\rho dm_{1}u^{2} = 0,$$
  
$$\frac{d}{ds}(T\frac{dz}{ds}) + mg + \frac{1}{2}C_{1}\rho dm_{1}u^{2} = 0$$
(1a)



图1 气圈纱曲线为正弦曲线

式(1a)含有 x, y, z 三个变量,表明气圈纱曲线 是一支空间曲线(称为三维)。仅计离心力作用,则 气圈纱曲线在平面 xoz 内是一条平面曲线(称为二 维),导出如下:在式(1a)中令 y=0 和略去项  $mv\omega$ 、  $\frac{1}{2}C_1\rho du^2$  及 mg,这时气圈方程式如式(1)。

$$\frac{\mathrm{d}}{\mathrm{d}s}(T\frac{\mathrm{d}x}{\mathrm{d}s}) + mx\omega^2 = 0,$$

$$\frac{\mathrm{d}}{\mathrm{d}s}(T\frac{\mathrm{d}z}{\mathrm{d}s}) = 0 \tag{1}$$

解式(1)的第二分式得  $T_z = T \frac{dz}{ds}$ 为定值;意即 纱张力 T 的z 向分量  $T_z$  不因弧长s 变化而变化,即 气圈纱曲线上每点的纱张力  $T_z$  值恒定。

由图 1 可知,纱张力 *T* 由分量  $T_x$  与  $T_z$  合成, 则有关系  $T^2 = T_x^2 + T_z^2$ ,及  $\sin\gamma = T_x/T$ ;式中: $\gamma$ 为纱曲线切线对于轴 *z* 的斜角,故得:

$$dT = \frac{T_x}{T} dT_x = -m\omega^2 x \sin\gamma ds = -m\omega^2 x dx$$
  
上式积分后得.

 $T = T_o - \frac{m\omega^2}{2}r^2 \tag{2}$ 

式中:

T-----纱曲线上任意点的纱张力;

T。——在导纱钩处气圈顶端纱张力;

r——纱曲线上任意点的转动半径;

m----纱的线密度;

ω——气圈纱曲线绕轴 z 回转的角速度( 兰锭速)。

因此,在钢丝圈接触处气圈底端纱张力 T<sub>i</sub> 按式 (2a)确定。

$$T_t = T_o - \frac{m\omega^2}{2}r_t^2 \qquad (2a)$$

式中:

r<sub>t</sub>——在钢丝圈上纱接触点的回转半径。

力  $T_o$  和  $T_t$  都在平面 xoz 内,且  $T_o > T_t$ 。接着

解式(1)的第一分式,近似取纱微段质量  $mds \cong mdz$ ,则得:

$$dT_x = -m\omega^2 x ds \cong -m\omega^2 x dz$$
又由图 1 得:tan $\gamma = \frac{T_x}{T} = \frac{dx}{dz} = \dot{x};$ 

故又得: $dT_x = T_z x dz$ 。将这两个表示式联立, 得到下式:

 $\ddot{x} = \frac{-m\omega^2}{T_z} x = \frac{-1}{p_z^2} x$ 

其解是

$$x = r_m \sin \frac{z}{p_z} \tag{3}$$

式中:

r<sub>m</sub>——任意常数,及

$$p_z = \sqrt{\frac{T_z}{m\omega^2}} \tag{3a}$$

当气圈高度为h时,即 $z=h,x=r_r$ (钢领半径),则得:

$$r_m = \frac{r_r}{\sin \frac{h}{p}} \tag{3b}$$

式(3)表明,在纱质点的离心力作用下气圈纱曲 线近似是一支正弦曲线,位于平面 *xoz*内,最大半径 是 *r<sub>m</sub>*,其定义域为[0,**π**];纱曲线斜率的通式为:

$$\tan \gamma = \dot{x} = \frac{r_m}{p_z} \cos \frac{z}{p_z} \tag{4}$$

令 z=0,代入则得气圈纱曲线顶角  $\gamma_{o}$ ;又令 z=h,代入则得气圈纱曲线底角  $\gamma_{i}$ ;故得:

$$\tan \gamma_o = \frac{r_m}{p_z} = \frac{r_r}{p_z \sin(h/p_z)} = \frac{r_r}{p_z} \csc \frac{h}{p_z} \quad (4a)$$

$$\tan \gamma_t = \frac{r_r \cosh/p_z}{p_z \sinh/p_z} = \frac{r_r}{p_z} \cot \frac{h}{p_z}$$
(4b)

少张力沿着纱曲线的切向,力  $T_z$  是它在轴 z 方向上分量,故有  $T_z = T_o \cos \gamma_o$  为定值;此式两端同 除以  $m\omega^2$  得:

$$p_z^2 = p_p^2 \cos \gamma_o \stackrel{\text{def}}{\Rightarrow} p_z = p_p \sqrt{\cos \gamma_o} \tag{5}$$

式中:

$$p_p = \sqrt{\frac{T_o}{m\omega^2}} \tag{5a}$$

及

$$p_z = \sqrt{\frac{T_z}{m\omega^2}} \tag{5b}$$

称  $p_p$  为气圈纱曲线(二维的)张力参数; $p_z$  为z 向张力参数。

#### 2 气圈纱张力 T

如上所述,必先给出张力参数 pz 值才能用式

(3)确定纱曲线的形状;然而张力参数 *p<sub>z</sub>* 值的确定
 又与气圈纱曲线形状(角 γ<sub>o</sub>, γ<sub>t</sub>)有关。那怎么解出
 张力参数 *p<sub>z</sub>* 呢?

取钢丝圈为脱离体进行力学分析,对于三维的 气圈纱曲线,导出气圈张力参数 p 计算式,见参考 文献[5]式(2-7)。现在用于二维的气圈纱曲线,可 令该式中 $\dot{Y}_i = 0$ ;又根据纱曲线形状,该式中 $\dot{X}_i = -\sin\gamma_i$ , $\dot{Z}_i = \cos\gamma_i$ ;最后得到二维的气圈纱曲线的 张力参数  $p_i$ 计算式如下:

$$(b_{p})^{2} =$$

$$\frac{M/m \wedge r_M}{\sqrt{(\exp(\mu_1 \varphi) \sin\beta/\mu)^2 - \cos^2 \gamma_t} + \exp(\mu_1 \varphi) \cos\beta - \sin \gamma_t} + \frac{1}{2} \int \frac{1}{$$

式中:

$$\cos\varphi = \sin\gamma_t \cos\beta, \sin\beta = r_w/r_r \tag{6a}$$

M---钢丝圈质量;

r<sub>M</sub>——钢丝圈质心的转动半径;

μ----钢丝圈与钢领的摩擦因数;

μ1-----纱与钢丝圈接触表面的摩擦因数;

 $\varphi$ ——纱在钢丝圈截面上接触包围角;

 $r_w$ ——纱管卷绕半径(=0.5 $d_w$ );角 $\gamma_t, \gamma_o$ 的计 算按式(4a)、(4b),它们与 $h, p_z$ 有关。

将 $\mu,\mu_1,\varphi,r_M$ 及 $r_t$ 视作常数,式(6)可演算成  $F(p_z,r_w,h)=0$ 类型的式子,意即张力参数 $p_z$ 由  $h,d_w$ 确定。就某气圈来说,其气圈高度 h 及卷绕直 径 $d_w$ 值为已知,使用电算二分法,从式(6)可解出 这气圈的张力参数 $p_z$ 及 $p_p$ ,相应的纱张力 $T_o = m\omega^2 p_p^2$ 。

## 3 计算实例

例 1:国产某型细纱机, 纺 T/R 65/35 纱, T<sub>t</sub> = 18.5 tex, 锭速 14 kr/min, 钢丝圈 6802-5/0, 钢领 PG1-4554, 筒管直径 18 mm(有锥度), 满管直径 42 mm, 钢领板短动程 53.23 mm, 钢领板升降为 180 mm。

计算参数: $\mu$ =0.22, $\mu_1$ =0.37,M=0.0421g,  $r_M$ =2.465 cm,m=0.000 185 g/cm, $r_r$ =2.25 cm,  $\omega$ =1466.075 rad/s, $r_f$ =4.2 cm,筒管半径  $r_o$ 与筒管 自身锥度有关,可按其零件图算出,取 $r_i$ =2.3 cm。

图 2 是本例细纱机气圈高度变化规律图,可获 得一落纱期间任意时刻 t 气圈高度 h 和卷绕直径  $d_w$  值,用式(6)算得  $p_z$ 、 $p_p$  及  $T_o$  见表 1。表中字符 脚标为"f"者,属于在钢领板短动程下端的参数,而 字符脚标为"o"者,属于在钢领板短动程上端的参 数。例:d<sub>f</sub>和d。表示满管直径和空管直径;T<sub>of</sub>表示在钢领板短动程下端的纱张力,T<sub>oc</sub>表示在钢领板 短动程上端的纱张力。表 1 中位置 0~6 是纱管的 管底期,7~24 是管身期,25~34 是管顶期。

按表 1 所载的数据制成纱张力 T<sub>o</sub>—t/T 曲线 图,如图 3 所示。由图 3 可知:① 在同一个 t/T 位 置上曲线 T<sub>o</sub>在上而 T<sub>of</sub>在下,说明一落纱期间钢领 板在短动程顶端时纱张力 T<sub>o</sub>大于在短动程底端纱 张力 T<sub>of</sub>;也说明卷绕直径小,气圈高度小的情况气 圈纱张力 T<sub>o</sub>大;② 一落纱期间纱张力 T<sub>o</sub>的变化呈 上升(而不是下降)趋势,大纱时达到最大;③ 一落



图 2 某细纱机气圈高度 h 的变化规律

表1 纱张力 $T_{of}$ 及 $T_{oo}$ 

| $d_f$ | $h_{f}$ | $p_{zf}$ | $p_{pf}$ | $T_{\rm e}/cN$ | 位署 | $d_{o}$ | $h_{o}$ | $p_{zo}$ | Þ 100    | $T_{\rm cN}$ |  |
|-------|---------|----------|----------|----------------|----|---------|---------|----------|----------|--------------|--|
|       |         | cm       |          | I of / CIN     | 卫且 | cm      |         |          |          | 1 00 / CIN   |  |
| 2.60  | 21.50   | 8.835 9  | 9.156 5  | 33.339         | 0  | 1.992   | 17.38   | 10.481 0 | 10.600 6 | 44.685       |  |
| 2.88  | 21.09   | 8.295 9  | 8.738 3  | 30.364         | 1  | 1.984   | 16.96   | 10.524 1 | 10.642 6 | 45.039       |  |
| 3.16  | 20.68   | /        | /        | /              | 2  | 1.976   | 16.56   | 10.566 5 | 10.684 3 | 45.393       |  |
| 3.50  | 20.27   | 7.828 0  | 8.358 1  | 27.779         | 3  | 1.968   | 16.15   | 10.608 3 | 10.725 9 | 45.748       |  |
| 3.73  | 19.85   | /        | /        | /              | 4  | 1.960   | 15.73   | 10.649 6 | 10.767 5 | 46.103       |  |
| 4.01  | 19.44   | 7.485 0  | 8.048 9  | 25.761         | 5  | 1.952   | 15.32   | 10.690 7 | 10.809 4 | 46.462       |  |
| 4.20  | 19.03   | 7.714 9  | 8.104 5  | 26.119         | 6  | 1.944   | 14.91   | 10.731 5 | 10.8514  | 46.824       |  |
| 4.20  | 18.62   | 7.846 7  | 8.161 0  | 26.484         | 7  | 1.936   | 14.49   | 10.772 3 | 10.893 9 | 47.191       |  |
| 4.20  | 18.21   | 7.929 7  | 8.200 5  | 26.741         | 8  | 1.928   | 14.09   | 10.813 1 | 10.936 8 | 47.564       |  |
| 4.20  | 17.80   | 7.991 1  | 8.232 2  | 26.948         | 9  | 1.920   | 13.67   | 10.854 0 | 10.980 4 | 47.944       |  |
| 4.20  | 17.38   | 8.040 4  | 8.259 3  | 27.126         | 10 | 1.912   | 13.26   | 10.895 2 | 11.024 8 | 48.333       |  |
| 4.20  | 16.97   | 8.0807   | 8.283 2  | 27.283         | 11 | 1.904   | 12.85   | 10.936 6 | 11.070 1 | 48.730       |  |
| 4.20  | 16.56   | 8.115 4  | 8.304 8  | 27.426         | 12 | 1.896   | 12.44   | 10.978 4 | 11.116 3 | 49.138       |  |
| 4.20  | 16.15   | 8.145 7  | 8.324 7  | 27.557         | 13 | 1.888   | 12.42   | 11.020 7 | 11.158 8 | 49.515       |  |
| 4.20  | 15.74   | 8.172 7  | 8.343 4  | 27.681         | 14 | 1.880   | 11.62   | 11.063 6 | 11.212 6 | 49.993       |  |
| 4.20  | 15.33   | 8.196 9  | 8.361 0  | 27.798         | 15 | 1.872   | 11.21   | 11.107 2 | 11.263 0 | 50.444       |  |
| 4.20  | 14.91   | 8.218 9  | 8.3777   | 27.910         | 16 | 1.864   | 10.79   | 11.151 6 | 11.315 2 | 50.913       |  |
| 4.20  | 14.50   | 8.239 0  | 8.393 8  | 28.017         | 17 | 1.856   | 10.38   | 11.196 8 | 11.369 4 | 51.401       |  |
| 4.20  | 14.09   | 8.257 7  | 8.409 6  | 28.122         | 18 | 1.848   | 9.97    | 11.243 0 | 11.425 9 | 51.913       |  |
| 4.20  | 13.68   | 8.275 0  | 8.424 9  | 28.224         | 19 | 1.840   | 9.56    | 11.290 3 | 11.458 0 | 52.452       |  |
| 4.20  | 13.27   | 8.291 2  | 8.439 8  | 28.325         | 20 | 1.832   | 9.15    | 11.338 8 | 11.547 1 | 53.021       |  |
| 4.20  | 12.86   | 8.306 2  | 8.439 9  | 28.325         | 21 | 1.824   | 8.74    | 11.388 6 | 11.6127  | 53.624       |  |
| 4.20  | 12.44   | 8.320 8  | 8.469 7  | 28.526         | 22 | 1.816   | 8.32    | 11.439 9 | 11.682 2 | 54.269       |  |
| 4.20  | 12.03   | 8.334 4  | 8.484 5  | 28.626         | 23 | 1.808   | 7.91    | 11.492 6 | 11.756 2 | 54.959       |  |
| 4.20  | 11.62   | 8.347 2  | 8.499 5  | 28.727         | 24 | 1.800   | 7.50    | 11.547 0 | 11.835 6 | 55.703       |  |
| 3.59  | 11.40   | 8.759 2  | 8.910 7  | 31.574         | 25 | /       | /       | /        | /        | /            |  |
| 2.99  | 10.10   | 9.411 9  | 9.581 4  | 36.506         | 26 | /       | /       | /        | /        | /            |  |
| 2.39  | 8.80    | 10.296 4 | 10.506 0 | 43.890         | 27 | /       | /       | /        | /        | /            |  |
| 1.80  | 7.50    | 11.547 0 | 11.836 0 | 55.703         | 28 | /       | /       | /        | /        | /            |  |

纱期间纱张力 T<sub>of</sub>的变化在始纺时迅速下降,位置 5 附近达到最小,此后呈上升趋势,在大纱时迅速增长 达到最大;④ 因所使用的筒管在形状上有了改进, 下部做成有一定锥度的锥台,使始纺时卷绕直径 d<sub>w</sub> 较大,故小纱期间纱张力 T<sub>w</sub>、T<sub>of</sub>降低。

## 4 转数可变的锭子

在环锭细纱机上应用转数可变的锭子主要是希 望降低过高的纱张力而把较低的纱张力提升到平均 值;使导纱钩至前罗拉钳口之间的纱线保持一个均 少张力T /cN



图 3 一落纱期间纱张力 T<sub>a</sub> 的变化

纺纱位置

匀稳定的张力,以期提高成纱质量,降低纺纱断头和 提高机器生产率,这里最主要的要求是纱张力 T。 为定值。

分析式(2a), $T_o = T_t + \frac{m\omega^2}{2}r_t^2$ ,式中, $T_t$ 为气圈 底端纱张力,随卷绕直径  $d_w$ 大小而变化;项 $\frac{m\omega^2}{2}r_t^2$ 近似于气圈纱的离心力,随气圈高度 h 大小而变化。 于是,为保持纱张力  $T_o$ 为定值,锭速  $\omega$  变化规律须 由下列两项构成:① 锭速  $\omega$  随着气圈高度 h 连续地 减少应采取的变化规律,称为锭速基本调节;② 锭 速  $\omega$  随着卷绕直径  $d_w$  变化——在区间  $d_o \sim d_f$  应 采取的变化规律,称为锭速逐层调节。

#### 4.1 锭速基本调节规律

如上所述,仅计离心力作用时气圈纱曲线近似 是一条正弦曲线,定义域为 $[0,\pi]$ ,从式(3b)得 $\frac{r_r}{r_m}$ =

$$sin \frac{h}{p_z}$$
,此式两端取函数 arcsin 得到下列两式:

$$\frac{h}{p_z} = \arcsin \frac{r_r}{r_m}$$
$$\frac{h}{p_z} = \pi - \arcsin \frac{r_r}{r_m}$$

第二分式仅适用于  $h \ge \frac{\pi}{2} p_z$  的情况——气圈纱曲线的最大半径能看见,由此式得:

$$\frac{h}{p_z} = \frac{\pi}{2} \tag{7}$$

于是 $\frac{h}{p_{p}} = \frac{\pi}{2} \sqrt{\cos \gamma_{o}}$ ,或

$$h = \frac{\pi}{2} \sqrt{\frac{T_o \cos \gamma_o}{m\omega^2}} \tag{7a}$$

按表1结果,  $\cos\gamma_{o}$ 值为0.93~0.98, 今取  $\cos\gamma_{o} = 0.95$ ,则得:

$$h \approx 1.535 p_{p} = 1.535 \sqrt{\frac{T_{o}}{m\omega^{2}}}, \vec{\mathfrak{Q}}$$
$$h\omega \cong 1.535 \sqrt{\frac{T_{o}}{m}}$$
(8)

式(8)展示了参数 $h,\omega,T_o,m$ 之间的关系。对 于锭速 $\omega$ 不变的细纱机,始结时气圈高度为最大值  $h_m$ ,则乘积 $h_m\omega$ 也最大;若采用式(8)确定所纺纱号 m的纱张力 $T_o$ 值也是最大,再大的纺纱张力是做 不到的;所以乘积 $h_m\omega$ 标志着这台细纱机的纺纱能 力,这参数也正是纺纱工艺和纺机设计者感兴趣的。

若要求一落纱期间纱张力 T<sub>o</sub>为定值,则锭速ω 须与气圈高度 h 成反比例变化,即:

$$h\omega = \hat{z}$$
 (8a)

#### 4.2 锭速逐层调节规律

纺纱过程中钢丝圈与钢领接触摩擦力 F 产生 筒管卷绕纱张力  $T_W$ ,这两个力对转轴的力矩互为 平衡,则得: $T_W \frac{d_w}{2} = Fr_r = \mu M r_M \omega^2 r_r$ 。

又气圈底端纱张力  $T_t = T_w / \exp(\mu_1 \varphi) = 2\mu M r_M \omega^2 r_r / d_w \exp(\mu_1 \varphi) = k_t / d_w (因此,常数 k_t 内含因数 \omega^2),将它代入式(2a)则得下式:$ 

$$T_o = \frac{k_t}{d_w} + \frac{1}{2}m\omega^2 r_t^2$$

从此式可看出,在要求纱张力  $T_o$  为定值下  $\omega$ 与 $d_w$  须成相同的变化,即 $d_w$ 小, $\omega$ 小;或 $d_w$ 大, $\omega$ 大。这个等式的各项都除以  $m\omega^2$ ,并将项 $\frac{1}{2}r_t^2$ 弃之, 则得下式:

$$\frac{T_o}{m\omega^2} \approx \frac{k_p}{d_w}$$

于是在纱张力  $T_o$ 为定值条件下,锭速  $\omega$  须与  $\sqrt{d_w}$ 成正比例,如下式示:

$$\frac{\omega}{\sqrt{d_w}} = k \tag{9}$$

上列式中 k<sub>t</sub>、k<sub>p</sub>、k 均为常数。

例 2:承上例,今取纱张力  $T_o$ =33.34 cN,这是 位置 o 时  $T_{of}$ 值,此时 h=21.5 cm, $d_w$ =2.6 cm,按 式(8)算得  $\omega_h$ =0.958 5×10<sup>3</sup> rad/s 。此后气圈高 度 h减小,按式(8a)计算得到  $\omega_h$ 值,见表 2 。在位

话用。

#### 置 20 以后气圈最大半径不能看到,式(8a)失效,不

| 表 2 | 锭速 | $\boldsymbol{\omega}_h$ 、 $\boldsymbol{\omega}_o$ | 及 | ω | f |
|-----|----|---------------------------------------------------|---|---|---|
|-----|----|---------------------------------------------------|---|---|---|

| h/cm  | $\omega_h 	imes 10^3 / (rad \cdot s^{-1})$ | 位置 | $d_o/{ m cm}$ | $\omega_o 	imes 10^3 / ( m rad \cdot  m s^{-1})$ | $d_f/\mathrm{cm}$ | $\omega_f 	imes 10^3 / (rad \cdot s^{-1})$ |
|-------|--------------------------------------------|----|---------------|--------------------------------------------------|-------------------|--------------------------------------------|
| 21.50 | 0.958 5                                    | 0  | 2.600         | 0.958 5                                          | 2.60              | 0.958 5                                    |
| 21.09 | 0.977 1                                    | 1  | 2.534         | 0.964 6                                          | 2.88              | 1.028 4                                    |
| 20.68 | 0.996 5                                    | 2  | 2.468         | 0.970 9                                          | 3.16              | 1.098 6                                    |
| 20.27 | 1.016 6                                    | 3  | 2.402         | 0.977 1                                          | 3.45              | 1.171 0                                    |
| 19.85 | 1.038 1                                    | 4  | 2.336         | 0.984 0                                          | 3.73              | 1.243 4                                    |
| 19.44 | 1.060 0                                    | 5  | 2.270         | 0.990 4                                          | 4.01              | 1.316 4                                    |
| 19.03 | 1.082 9                                    | 6  | 2.204         | 0.997 0                                          | 4.20              | 1.376 3                                    |
| 18.63 | 1.106 1                                    | 7  | 2.138         | 1.003 0                                          | 4.20              | 1.405 8                                    |
| 18.21 | 1.131 6                                    | 8  | 2.072         | 1.010 2                                          | 4.20              | 1.438 2                                    |
| 17.80 | 1.157 7                                    | 9  | 2.006         | 1.016 9                                          | 4.20              | 1.4714                                     |
| 17.38 | 1.185 7                                    | 10 | 1.992         | 1.037 8                                          | 4.20              | 1.507 0                                    |
| 16.97 | 1.214 3                                    | 11 | 1.984         | 1.060 7                                          | 4.20              | 1.543 3                                    |
| 16.56 | 1.244 4                                    | 12 | 1.977         | 1.085 1                                          | 4.20              | 1.581 6                                    |
| 16.15 | 1.276 0                                    | 13 | 1.967         | 1.109 9                                          | 4.20              | 1.621 8                                    |
| 15.74 | 1.309 2                                    | 14 | 1.961         | 1.137 0                                          | 4.20              | 1.664 0                                    |
| 15.33 | 1.344 2                                    | 15 | 1.953         | 1.165 0                                          | 4.20              | 1.708 4                                    |
| 14.91 | 1.382 1                                    | 16 | 1.945         | 1.195 4                                          | 4.20              | 1.756 6                                    |
| 14.50 | 1.421 2                                    | 17 | 1.937         | 1.226 7                                          | 4.20              | 1.806 3                                    |
| 14.09 | 1.462 5                                    | 18 | 1.929         | 1.259 7                                          | 4.20              | 1.858 8                                    |
| 13.68 | 1.506 4                                    | 19 | 1.922         | 1.295 2                                          | 4.20              | 1.914 6                                    |
| 13.27 | 1.552 9                                    | 20 | 1.914         | 1.332 4                                          | 4.20              | 1.973 7                                    |

表 2 中  $\omega_h$  可看成是纱卷绕在直径  $d_w = 2.6$  cm 的锭速,那么在卷绕直径  $d_w$  为其它值时,按式  $\omega = \frac{\omega_h}{\sqrt{2.6}} \sqrt{d_w}$ 计算,所得锭速值如  $\omega_o, \omega_f$  也列在表 2 中。

根据表 2 的数据绘出图 4。图中曲线 oabcd 为



图 4 锭子变速曲线

基本调速曲线 (图中线段 bcd 系自行拟订),然后在 位置 0~20 各根纵线上划定逐层调速区间,最后勾 划出上、下两根虚线,形成调速区间的界线,这样就 制成锭速变化曲线图。它所表达的是在维持纱张力  $T_a=33.34$  cN 情况下锭速  $\omega$  变化规律。

本例原定锭速  $\omega_x = 1466.075 \text{ rad/s} 恒定,现改$  $为锭速可变的,以完成纺纱张力 <math>T_o = 33.34 \text{ cN}$ 为 定值的要求,从图 4 的结果来看,在卷绕小直径  $d_o$ 时锭速  $\omega_o$ 降低了,并且始终是  $\omega_o < \omega_x$ ;卷绕大直径  $d_f$ 时锭速  $\omega_f$  提升了,虽然  $\omega_f > \omega_x$ 占有位置一半左 右(10~24);但总的来说,细纱机产量较原来下降。

## 5 结论

**5.1** 仅计离心力作用时气圈纱曲线近似是正弦曲线,在平面 xoz上,定义域 $[0, \pi]$ ,气圈张力参数  $p_p$ 由式(6)确定之,纱张力  $T_o = m\omega^2 p_p^2$ 。

5.2 实例计算的结果表明,由于现用的筒管底部直径放大,做管底时纱张力 T。降低了;但在做管身时纱张力 T。逐渐增大,以至于做管顶时纱张力 T。增 至最大。

5.3 在环锭细纱机上应用转数可变的锭子主要要求纱张力 T。恒定,降低过高的纺纱张力,把较低的

纺纱张力提升到平均值。这个纱张力 T。似以始纺时纱张力 T。r,为宜。

5.4 锭速ω所采取的变化规律有:① 基本调节,锭 速ω随着气圈高度 h 连续地减小而增大,两者成反 比例变化,如式(8a)示;② 逐层调节,当气圈高度 h 为某值时,锭速ω随着卷绕直径 d<sub>w</sub> 增大而增大,如 式(9)示。如要求纱张力 T<sub>o</sub>为定值,则二者必须兼 有,如图 4 曲线所示。

5.5 过去曾使用锥轮无级变速器完成锭速阶段调节,现在使用的筒管底部直径放大,已降低了小纱期间纱张力 *T<sub>w</sub>、T<sub>of</sub>*;但是若要降低大纱期间纱张力 *T<sub>of</sub>、T<sub>w</sub>*,只有选择锭速可变的途径了。

**5.6** 从锭子变速曲线(图 4)可以看出,改为锭速可变的细纱机后细纱产量有所降低。

#### 6 附录

## 6.1 关于文献"balloon control"

文献 balloon control(P.F. Grishin 著)过去曾 在国内部分地区受到注意,今指出它的不足和错误 之处,防止谬以千里。

a) 对空气阻力 dS 处理不当。他认为空气阻力 dS =  $K_1 \rho^{m-1} \rho \omega^m ds = a_1 \rho ds (\rho$  为气圈半径) 是个平面力, 仅对纱微段 ds 回转产生阻力, 所以他导出的气圈纱曲线方程式不全面。C. Mack 认为空气阻力  $F_a = \frac{1}{2} c_1 \rho du^2$  (这里  $\rho$  为空气密度) 是个空间力, 除了对纱微段 ds 产生回转阻力外, 还对纱线产生垂直向下的作用力。

b) 他取纱微段  $ds \approx dx$ ,所以列出的气圈方程 式和解不完整 $(ds = \sqrt{dx^2 + dy^2 + dz^2})$ 。

c) 他认为"钢丝圈一钢领是离散的多点接触, 这比取钢丝圈一钢领单点接触计算摩擦更为真切", 故他在文中取钢丝圈一钢领的摩擦力为  $F = fN_x + fN_y$ ,得出纱张力  $T_x$  计算式如下:

$$T_{x} = \frac{F_{c}}{v_{1}\phi + \dot{y}_{1} + \frac{1}{f}\dot{z}_{1} - 1}$$
(f1)

式中:

$$\phi = \mu(\cos\gamma + \frac{1}{f}\sin\gamma);$$
  

$$v_1 = \sqrt{1 + \dot{y}_1^2 + \dot{z}_1^2};$$
  

$$F_c = 5 \quad 6GDn^2;$$

这个说法也出现在前苏联的拉科夫著《精纺工程》里(参见文献[2])。现代钢丝圈与钢领已改进为

一点接触,式(f1)不适用。

#### 6.2 纱张力 T<sub>i</sub>

如上所述,仅计离心力作用时气圈纱曲线近似 是正弦曲线,它在平面 xoz 内;纱张力 T 沿着纱曲 线切向作用,则气圈顶端张力  $T_o$  和气圈底端张力  $T_i$  都在平面 xoz 内;但卷绕张力  $T_w$  在平面 xoy内,并有关系  $T_w = T_i \exp(\mu_1 \varphi)$ 。

今取钢丝圈为脱离体,作用在钢丝圈上力有: ① 钢丝圈离心力  $F_M$ ,  $F_M = Mr_M \omega^2$ ;② 气圈底端纱 张力  $T_i$ ,卷绕纱张力  $T_w$ ;③ 钢领接触面上反作用力 N 及钢丝圈与钢领之间摩擦力 F,  $F = \mu N$ ;以上诸 力互为平衡,则组成一个空间的封闭的多边形,如图 5 所示,于是得出下式;



因为 $N_x = \sqrt{N^2 - N_z^2}$ ,故得下式:  $\sqrt{(\frac{T_w \sin\beta}{\mu})^2 - (T_t \cos\gamma_t)^2} = F_M + T_t \sin\gamma_t - T_w \cos\beta$ , 将 $F_M = Mr_M \omega^2$ , $T_W = T_t \exp(\mu_1 \varphi)$ 代人,解得:  $T_t = \frac{Mr_M \omega^2}{\sqrt{(\exp(\mu_1 \varphi) \sin\beta/\mu)^2 - \cos^2 \gamma_t} + \exp(\mu_1 \varphi) \cos\beta - \sin\gamma_t}$ (f2)

联立式(2a)、(f2)及应用式(5a)也能得到式(6)。

## 参考文献:

- [1] Grishin P. F. Balloon control[J]. Platts-Bulletin, 1954, 8(6):8.
- [2] A. Π 拉科夫. 精纺工程[M]. 北京:纺织工业出版社, 1952:82-83.
- [3] 陈人哲. 纺织机械设计原理:上[M]. 2 版. 北京:中国纺 织出版社,1996:303-304.
- [4] DE BARR A. E. The principles and theory of ring spinning[M]. London: The Textile Institute, 1965.
- [5] 周炳荣. 纺纱气圈理论[M]. 上海:东华大学出版社, 2010.